ON THE OSCILLATORY AND ROTATIONAL RESONANT MOTIONS
PMM Vol. 32, No. 2, 1968, pp. 306-313

L.D. AKULENKO
{(Moscow)

(Received March 29, 1967)

In this paper we investigate the rotational and oscillatory solutions of perturbed, essential-
ly nonlinear systems with several degrees of freedom. Using the method of small parameter
we construct steady resonant solutions and apply the first Liapunov method to derive the
sufficient conditions of their asymptotic stability. An example from nonlinear mechanics is
solved to illustrate the proposed method. Analogous results were obtained earlier for the
particular case of almost conservative systems with one degree of freedom. The system in-
vestigated in this paper represents a generalization of Liapunov and similar systems.

1. Statement of the problem. Let us consider a real system with a small para-
meter

dxi/dt=Fi(:r,,,,_, xn)-}‘lﬂ/i(l, Tly oo oy In; 8) (izly..., n) (11)
for which the following generating self-contained system
dx‘°/dt'_—_F‘(:rl°,, o 0= Fy (1.2

admits a stable, two-parameter family of rotational — oscillatory solutions of the type [1]
2°==6,(T /20 0 (E)(t — lo-- V) + @, (0 (E) (£ — Lo - 7), £)

6,=—1 (i<p) 6;=0 (i>p,p<n)

When the system is purely oscillatory, we have p = 0, i.e. x,°= ¢;, where ¢, are 27~
periodic functions of the phase i) = w (E) (¢ - t,+ T T, denote the constant periods of the
functions F, and f, in rotating coordinates; @ = @ (£) is the natural frequency; 7 is the phase
constant and E is the second parameter of the family.

We can obtain (1,1) in a more suitable form using the following transformation [2 and 3}

| < _ _
"‘i = Igo (\P- E) -+ —3— 2 [“li.‘. (‘pv E) hk -+ Ail: NJ’ E) hi. ] (13)
k==3

Here (4, ) is an n % (n — 2)-matrix which is, generally speaking, complex (a bar denotes
a complex conjugate). This matrix also appears in the following nonsingular substitution
0x° axS°

1

Yy, =3 " -+ BE Y + ;_2'3 Aik ¥, E) u,

n

13

which reduces the system of nonperturbed equations wtitten in variational form

dy. dF,;
@ =2(GEn  o=t..m (1.4

to a system with constant coefficients of the form
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n
dlll . dllg du) .
=0 (B, =0, m-:?_,‘a H, (Eyu, (=3,...n)

in which the roots of the characteristic Eq.
A(P):I}IJA‘—G"kPl:O (/‘1,‘.:3'-..'")

will qlso play the part of characteristic indices for the variational system (1.4), whose vari-
ations have negative real parts (the remaining two are equal to zero). As a result we obtain
the following system (1.5)

dE ) dy dh .

T E A b, G 0B 4 F (L B b h o), o7 =H(E)h+g(t, E g, he)
Here A is the (n — 2)-dimensional vector and H (E) is the (n — 2) x (n — 2)-stable matrix,

both of them are complex quantities. Functions f, w, F and g are real for real E, y and &

and complex A, are @-periodic in ¢t and 2 ~periodic in i, both periods being constant (§ de-

notes the period of f, in £). Further, the following estimates hold for the functions, f, F and

g when |£| and |4, are sufficiently small:

6 TEL TelShlelt defnl® 0 (b, ha<H 20) (1.6)
At €= 0 and A = 0 these inequalities yield the following identities
CE e s (f, F.g)__o am Y, F.:)_O S
(/, ¥, gy =0, axp’aF"’ = 0h0l|)raE’ = (r,s=>1)

provided that f, F and g are differentiable the required number of times.

In this paper we develop a direct method of constructing steady resonant solutions of
the system (1,5) for all ¢ & [‘,o, o). Unlike the existing averaging schemes [1 and 2] our
method of small parameter enables us to follow the behavior of the perturbed system in the
limit as ¢ - co. To put it more accurately, our scheme yields the sufficient conditions for
the occurrence of the steady, resonant modes. When studying the Liapunov stability of these
modes, we find that we are able to follow the development of other similar type modes at
the initial time. This throws light on the importance of the study of the Liapunov stability
of a perturbed motion. We note that the unperturbed motion is unstable and, that we have a
critical case in which one group of solutions corresponds to a double characteristic index
equal to zero.

2. Construction of the steady resonant solution of the system.
The solution will be a resonant one of the form m/l, if
w(EHM/v=1]m (v=2a/0)
where m and [ are integers in some simple ratio. If the functions f, w, F, H and g are analy-
tic in some region
le|e, [E--Erti<<a, [Imy|<<B, R0

then the solution should be sought [4] in the form of series

(]

<0 0
Y . { O ]

E == Eg* - }_1 e'E, Vo= vt T >.J £y, h= 2 ey (2.1)
f=1 i=1 {==1

in which £, Yy, and h; (i 2 1) are (T = m @)-periodic. Using the estimates (1.6) we find, that
the functions
E = E,*, Y=Umv (t— 1)+ 1T, h=20

will be a solution of (1.5) when &€= 0. Inserting the series (2,1) into (1.5) and comparing
the coefficients of like powers of £, we obtain an infinite sequence of interrelated systems
for E,, i, and h, and in particular, the following system for the first increments

dE, af diy , {OF dhy g

=)y ar = E+ (G )y o Hmt (‘a?).,

Here the subscript 0 at the relevant expressions in brackets, mean that they are taken

for the generation solution and for € = 0. The first elementary equation yields
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af
("—') dll -+ A (h = COIISL)

Er=\\%e °

P I

From the above argument it follows that £, will be periodic function, if the phase con-
stant satisfies

T
P (1) =S (%—)0 dt=0  (Imv*=0) 2.2)
0

This condition is necessary and sufficient under the constraints imposed on the function
[ and other quantities. We shall call (2.2) the condition of phase equilibrium. Later we shall
see that the condition of periodicity together with other similar conditions have thre deci-
sive role in our investigation, since they will be used for elimination the secular tems,

We find the function 1[;‘ in the similar manner

t t
Y1 = wo’ 43 (£ — &) +§ [mo’S (gﬁL)o dts - (g_:j)o] dty 4 B,
t

Condition of periodicity together with the condition that a)'(Eo* ) # 0, yield the value of

the constant A !
T t
, , af aFy -
Ayt = — (wo T -I‘S‘ [(oo S(—a—é’)() dty “}= (5;)0 l dt
0

to
This defines the periodic functions £, and A, completely

. t
af -1y (92
E =S (’3—5—)0 a4 4%, hy= S efte (10 (.'i%—)o dh

00

while a,b is defined wnh accuracy of up to the constant 8.
Equations for second increments yleld

t
o*f
E.—= BlS (a—EW)D dty + S Sa (1) dty -1- As (As == consl)
13

where S2 is a known periodic function

L (2 Z1Y 1y L (T) e
se0 =5 (52), + (395 ) Fr + (g an)o i+ (gas)y b+

1 t

() ] ()t 55 5 ]

Condition of periodicity of £, yields B

aP\™!
B = (5:) | St
provided that 7+ is a simple, res] root of (2.2). This defines the periodic function ¢ In-
serting the latter into the expression for £, and qu we find
t

At = — ((ﬂo'T)"f {0)0'5 [Bx (azﬂa\p) -+ S:] dh + 5 (Do'El +
)

+ 4G (20, 5 (25 () (55 o

QQ/“H
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Thus the periodic functions Ii‘2 and h2 can be fully determined from the second approxi-
mation system, while

!
o [t S (05, + (25, ot
t

L]
1F aF 1 (3*F
+ (b%bi?)o \p! + (m)o hl + —.ﬂ- (W)O ’ll!]-dll + Ba.

The constant of integration B, appearing in this expression is obtained from the condi-
tion of periodicity of E, etc.

We can find in this manner the corrections of any order and prove by induction that the
method yields any required number of bounded periodic coefficients of the series (2.1).
This means that we can obtain a resonant solution which will be unique within the domain
of definition and analyticity of the syste-a (1.5) up to any degree of accuracy in € for all
te [‘o' o0).

Note 2.1. A steady resonant solution of (1.5) can be constructed using consecutive
approximations with the help of the following system

dx; af 1 18%f a9/ a*f
at = (78.)0 +e [_2- (3?"_)0 + (68 aE)o Tt (EE)O Vi T

il 12y, |
+ m oz{_l + i éﬁ 0 z{..l i X (‘0 z{..ly yi._lv z{_ll 8).

dy, , (aF 1 1 (3°F 3°F
qr =@t 5a)o+e [’2‘ ©0" %4 + 7(ﬁ)o+ (a—r 3E )y Tin T

a°F o°F 1 (°Fy\
+ (ae a\p)o Yia T (ae ah)o Zaty (55?)0 2y HY (6 iy Vi 20 ©)

dz; g 1 (0% 0% 0% %

a = Hozi + (55)0 te [”2' (:az?)o + (zam)o gt (55574»)0 Vg (aTaF)o o ¥
1 a’z) . oH

+ 5 (W,o zg o + (a—E—)o Ty 1%y + Z(t, Ty g Yiogs Z4-po e)]

Here X, Y and Z are known, sufficiently smooth functions. Proof of the convergence of
consecutive approximations i.e. of the convergence of the functions x,, y, and z, to T-perio-
dic functions appearing in the following substitation

E = E# + gz, Y=/ m)v (t— t) + t + gy, h=¢gz 2.3)
is given in (4], therefore we consider the use of the proposed system justified. It should be
noted that the method of consecutive approximations can be applied to systems of the type
(1.5), if the functions f, @, F and g posses first and second order partial derivatives with
respect to €, E, i) and h satisfying, together with dH/dE the Lipshits conditions with ¢-
independent constants in some region

e (0, &), —a<E—Ef*<a, ¢ (—os, o), B <O

The result obtained can be formulated. briefly as follows:

Theorem 2.1. If

1) functions f, w, F, H and g are sufficiently smooth and satisfy the conditions listed
in Section 1;

2) equations(2.2) has a real root 7* and

3) the inequality

@ (Eg*) 8P [ av* = 0
holds, then provided that |g| is sufficiently small, the perturbed system (1.5) has a unique
steady resonant solution belonging to the domain of definition and smoothness of the func-
tions f, w, F, H and g. When & = 0, this solution is

E=E°.=CODSL ¢=(l/m)v(‘—l°)+‘l" A=0



302 L.D. Akulenko

Note 2.2, When we say ‘‘the uniqueness of the solution’’ we mean, that a single so~
lution of the type {2.3) corresponds to a fixed set of values of m, [, E * and 7°, It can be
easily be shown that Eq. (2,2) admits, on the segment of length 27, andeven number of real
roots T°.

Critical cases are possible, when the condition (3) of the Theorem does not hold.

Note 2.3. Let 7* be a real, r<tuple (r > 2) root of (2.2), but let wo'# 0. In this case
the uniqueness of the solution as defined above, may be violated. In general, we can repre-
sent the steady resonant solution in the form of a series in fractional powers of a amall
parameter. Integration constants of the type 8, can be found from nonlinear algebraic equa-
tiops, Investigation of the generalized case is difficult and demands the use of subtle and
involved results of the theory of implicit analytic functions. The pattemn of splitting of the
integral curves eppears, in this case, to be very complex.

Note 2.4, The case when (2.2) is satisfied identically for some m and I/, is fairly
often met in practice. We then speak of higher order motions. Malkin in [4] indicated the
possibility of cccurrence of such cases for the oscillatery nonlinear systems, while invese
tigating the periodic sclution by Poincare’s method, He also investigated an analogous
particular case for a guasilinear resonant system. Periodic resonant motions of the first,
second and third order are obtained in [5] for a nonlinear analytic system with one degree of
freedom and their Liapunov stability is investigated. Analogous rotational problem was
dealt with in [6].

We should note that this critical case is of considerable theoretical and practical inters
est when applied. to the general system (1.1} and should be studied in detail.

Note 2.5 Critical cases occurring when Wy ‘= 0 are of practical interest, provided
that ¢ is independent of £, i.e. provided that the system is quasilinear. Real constants £ *
and 7% defining the steady mode can then be obtained from

T
= (p_) 1t == 0 Eo, 1) = (éf) dt == 0
P(Eo,‘r)z.\ o5 ), 4=, QB 0= (55), 4 -
0
while the condition (3) of Theorem 2,1 assumes the form
(P, Q) I(ES*)+0 (2.4)

If, on the other hand, « is dependent on E but “’o"‘ 0, then the uniqueness of may be
violated for some specified set of m and I. We call such a case an exceptional one when
dealing with nonlinear moticns. Obviously, we can always achieve the condition & 0';4 0
by varying m and /.

3. Investigation of stability of the perturbed resonant solution.
We shall use the substitution

E=E(, e)+ U, =y & +V h=h(t g) + W

to construct the following variational equations

v et @l df -
= EV eV H A U e
ayr oF aF oF .
= (04 E) U+ T AL U e
diy

dy dg d¢ .
== ' ol Y 5 S En L= Ny 1
ar (i1z+ag)UTaq,"+(Hn a‘>lV,,,1(‘.U.‘.‘.€)

Here the functions f,, F, and g, are periodic in ¢, and the first terms of their expansious
in U, V and W are quadratic. The well-known Liapunov's theorem {4] implies that it is suf-
ficient to investigate the stability of the stagnation point of the linear approximating system.

When £ = 0, we see that (n — 2) characteristic indices of the variational system have
negative real parts, while two remaining indices have both, real and imaginary parts, equal
to zero, These two indices have a single correaponding group of solutions. In this case the
expansion of the critical characteristic indices will be in the powers of 8 =/t . One of the
solutions of the variational system has the form
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U = uexpyt, V = vexpyt, W = w expyt
whereyy is the critical characteristic index, while 4, v and w are periodic functions of ¢.
Moreover,

S o o ©
1= Z 6‘1{. u= 2 oy, = Z 8y, w= Z St

=1 =0 $=0 =0
ive. the functions u,, v, and w, (i > 0) should also be T-periodic. Taking this into account
we obtain, from the conditions of periodicity of Bos Voo Wo, By, ¥4y W and B the following
relation for Y:

= 0 (E,*) P [ dx*
Thus, when Y1 25 0, the perturbed solution is unstable fort = 83 if, on the other hand,

yl2 <0, then its stability depends on the sign of y, which can be found from the conditions

P ¥a a.ndus. and is

T
1 (¢ 10 *F
T =37 S [(aeaE )o + (aea\p)o] dt
o
As a result, we have the following expression for both critical characteristic indices
A =48(0ydP/3t*)/* + 8% + O (8Y)
which yields, at sufficiently small & > 0, the following theorem.

Theorem 3.1. The constructed perturbed resonant solution (2.3) is Liapunov stable
as well as asymptotically stable for ¢ > tos provided that

of periodicity of the functions v

T. 2 2
canfico (s (Zla<s

and unstable otherwise.

Note 3.1. Theorem 2.1 excludes the case y = 0, i.e. the first condition is the neces-
sary one. If y, = 0, then higher powers of 5 must be taken into account (computation of ¥,
etc.) to ohtnn the sufficient conditions of stability.

Note 3.2. When @ = const, the resonagt solution will be aPymptoticnlly stable if the
eigenvalues of the matrix (2.4) have negative real parts (see Note 2,5).

In conclusion we shall consider a specific example taken from mechanics.

4. Example. We consider a mechanical model representing a system with two degrees
s of freedom in the gravity field (Fig. 1). We assume that the model
is fixed to a rigid support at two points, and that the forces acting
at these points on the plane annulus consist of a recurrent elastic
moment and a frictional moment proportional to the angular velocity
By constructing a Lagrangian for this system with the perturbation
forces taken into account and performing the relevant differentiation,
we can obtain the system
ma?0”" — ma? sin 8 cos Ot -+ mga sin 0 = —a,8° + f, (vt)

I~ + ma? sin® 9(p+ 2ma®sin 0 cos 00°¢"+ kg = —
-, 8in?0p" — A" — z, () + g1 (V)

Here I denotes the moment of inertia of the ring relative to the

0’00 *~axis, o is the coefficient of viscous friction between the
ball and the outer medium, f and g, are the extemasl periodic mo-
Fig. 1 ments and s, is a function in which the nonlinear effects of the elas-
tic moment are taken into account. Using the noution
ma® a h ( ky?
7—: . nT;§=“' ma ,(Vl), T: k3



304 L.D. Akulenko

z A o " 1 (vt)
%ﬂzez(({!), —;-::7\., ‘Tl‘_—*S“X, -l—gl——zs‘g(v!)

we can obtain a system of the type (1.1)
0" — sin 0 cos 897 + (g/ a)sin = ¢ [f (vi) — a8’}
o+ Ap + Ko =g (1 + &sin?0) g (v&) + A sin®* 0 + (A — a)g sin®6 —
— 20" ¢ sinBcos® — z ()} (4.1)
We shall, for definiteness, cousider the case
f(v) = J, sin v, g (vt) = g, sin{vt -+ §), z {q) = og®
When &= 0, the system (4,1) admits a two-parameter family of periodic

8o=2arcsin(y1sn [2 V g/a (¢ + 1), ul) Q=0
(n=VaEc2, To(E)=2Vajs K(n), n<1)

or rotational-oscillatory

8 =28m [VE/2(t+1), T2]==0(E)(t41)+4 S »,—T_;sm;w(Fa)(f

q)‘):O (‘rgz 1 /'{1<1, TO (Eo)-‘-'—‘2 VZ/EO A’(Y‘!)v q==exp-— '1[{'/1")

solutions. Here K denotes a complete elliptic integral of the first kind taken over the cor
responding moduli, while £ and 7 are constants of integration. In the following we shall
limit ourselves to the rotational-oscillatory sclations. Using the substitution

6=0,(y, E), O =0,0E), k=9  Ih=¢
we can obtain the following system of the type (1.5):
dE ['dt == €0y (fosin vt — aly’) -+ 0y sin 0y cos O hs?

dp/dt=VE[Zx]K(1:) 00 [€ (fosin vt —aby) -}-in 05 cos 0h7] X
(0o [2E—2g/a{l —cosa)] 1 —wy [2E — 25 fa{l —cos )] /*} d

dhy Jdl == hy, dhy[dl == — kMg — Ahy -8 (1 4 £5in?0p) ! X
¥ X [gosin (vi - §) - (A - (A~ a) ha) sin? @ — haBy’ sin 200 — 6Myd)
and apply to it the method developed in Sections 2 and 3.
We can, however, investigate the system (4.1) directly. Substituting into it the series
0=0,(po, Eo) + €8 (1) + .., @ =ep () FERO T
and comparing the coefficients of like powers of € we obtain, in particular,
0, + (g/ a)0, cos 0 (Yo, E) = fo sin vt — aby” ($p, L)
¢+ A 4 Ky = gy sin (vt 4+ 0)
Periodic solution of this linear system can be obtained in its explicit form using the
method of variation of the integration constants
t
SRR A . o N0 .
01== Mo - 4~ leo (fosin vty — a0y} Qo'dts — ax By (fosin vty —aly’) — Ny |dty +
0 0
: t
68"[‘. in vt ') 80'd N]} My -} 6
+ @ Fwo B(fosm\r‘-x—a()o}ﬁo Hhh— Nyjr= Mo -1 0

4
d
N,= ) [S (fo sin vty — aby') 8p'dl; — mo-é%% (fosinvt — aOo‘)]dt
00

= [go (A* — v?) sin (vt + §) — gohvcos (vl 4 8}, [(AT - v1° - (hv)?]
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Here M1 and {\’l are constants of integration, while A = A(0) is a Wronskian for the Eq.

27+ (g/ ajcos Bz = 0 {zy == 0, z3= 031+ 0,80,/ doy)
where the brackets contain its basic system of solutions. For simplicity we shall only con-
sider the resonance of the form m : 1. Then the equation of phase equilibrium can be writ-

ten as
4otm g™ . 8av G (r2)
P(v) = — v ’1—+ q.z,;’,".Sln VU= R (1) = 0
where G denotes a complete elliptic integral of the second kind. This equation admits the
following real roots

B = 2vaG (v.) (1 4 ¢#™) [/ a2m®K ()™ <1
provided that the inequality
1, = —(1/ v)arc sin f§, t; = (1 /v) {7 + arc sin P) (mod 2n)
holds. If 3 < 1 (the case R = | is a critical one) we have AP/ 7* £ 0 and by Theorem 2.1
there exists a solution of the perturbed system provided that € is sufficiently small. In par-
ticular, Expressions
=0, -+ & (M*0," + 8,%) + O (e?), @ == ¢ (1) -+ €, (1) + O (%) ]
hold for t &2[0, ). Here we use the following notation

apP "ty 1
My* o= (—§f;~) S {?_q(}l'* — O *fasin vt — 5 sin 290(?1.2) 8o dt
o

14

1 , .
@ ()= S [eP(h) — I (0 sin 200 +

+ sin® 0o [(A — a) @1 + K%y — gosin (vi1 + 8]} dfy

(Pro=—A/2+ VX/4—k, OP/ot*="Thumq™ V1B /(1-+¢*™)
Moreover, by Theorem 3.1 we can establish that the perturbed solution is asymptotically
stable for 7% = T, provided that a > 0.
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