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In this paper we investigate the rotational and oscillatory solutions of perturbed, essential- 

ly nonlinear systems with several degrees of freedom. Using the method of small parameter 
we construct steady resonant solutions and apply the first Liapunov method to derive the 
sufficient conditions of their asymptotic stability. An example from nonlinear mechanics is 

solved to illustrate the proposed method. Analogous results were obtained earlier for the 
particular case of almost conservative systems with one degree of freedom. The system in- 

vestigated in this paper represents a generalization of Liapunov aud similar systems. 

1. Statement of the problem. Let us consider a real system with a small para- 
meter 

dx, ldr = F, (XI, . . ., z,,) -t e/i \I, 11, . . ., I,,, t) (i=l,...,n) (1.1) 

for which the following generating self-contained system 

dx,"/df = Fi(qO.. .., zno) G Fi, (1.2) 

admits a stable, two-parameter family of rotational - oscillatory solutions of the type [l] 

=i 
OX 6, (r, / 2X) 0 (R) (1 - lo -f- T) -t ‘pi (0 (I?) (l - !&I _1- T), R) 

6, = 1 (f dp) 6,=0 (i>P, P<(n) 

When the system is purely oscillatory, we have p = 0, i.e. x,O= q$,, where I$* are 2n- 
periodic functions of the phase $ = o(E) (r - to + 7); T, denote the,constant periods of the 
functions F, and /1 in rotating coordinates; 0 = 0 (E) is the natural freqnency; T is the phase 
constant and E is the second parameter of the family. 

We can obtain (1.1) fn a more suitable form using the following transformation [2 and 31 

0.3) 

Hera (A ,k) is an n x (n - 2)-matrix which is, generally speaking, complex (a bar denotes 

a complex conjugate). ‘Ihis matrix also appears in the following nonsingular substitution 

which reduces the system of nonperturbed equations written in variational form 

(i=i,...,n) (1.4) 

to a system with constant coefficients of the form 
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du, du¶ duj n 
dt=~‘(E)u~, --0, z-= Ll dt -- Xl Hi;;(E) u,,. (i= 3, . . ., 4 

k=3 

in which the roots of the characteristic Eq. 

A (P) = I fJjl; - !jkP I = 0 (i. k = 3, . . ., n) 

will also play the part of characteristic indices for the variational system (1.4), whose vari- 
ations have negative real parts (the remaining two are equal to zero). As a result we obtain 
the following system 

dE d9 dh 
(1.5) 

&- = f (1, E, $9 !I, c), ;i~ := o(E) + F (f, E, 9, h, e), -g- =ff(E)h+g(f, E,Jl,h,e) 

Here h is the (n - 2)-dimensional vector and H(E) is the (n - 2) x (a - 2)-stable matrix, 
both of them are complex quantities. Functions f, ok, F and g are real for real E, +!I and e 
and complex h, are &periodic in c and 2 rperiodic in 3, both periods being constaut (8 de- 
notes the period off, in I). Further, the following estimates hold for the functions, /, F and 
g when ISI and Ih, are sufficiently small: 

At E = 0 and h = 0 these inequalities yield the following identities 

provided that I, F and g are differentiable the required number of times. 
In this paper we develop a direct method of constructing steady resonant solutions of 

the system (1.5) for all t CC [t,o m). lJnlike the existing averaging schemes [l and 21 our 
method of small parameter enables us to follow the behavior of the perturbed system in the 
limit as t + m. To put it more accurately, our scheme yields the sufficient conditions for 

the occurrence of the steady, resonant modes. When studying the Liapunov stability of these 
modes, we find that we are able to follow the development of other similar type modes at 
the initial time. This throws light on the importance of the study of the Liapunov stability 
of a perturbed motion. We note that the unperturbed motion is unstable and, that we have a 
critical case in which oue group of solutions corresponds to a double characteristic index 
equal to zero. 

2. Construction of the steady resonant solution of the system. 
The solution will be a resonant one of the form m/l. if 

o(E,*)/v = liw (v = 2;r / 0) 

where m and 1 are integers in some simple ratio. If the functions f, 0, F, H and g are analy- 
tic in some region 

I e I d co, IE--E~‘I\<‘J, IInr$l<?, Ihl<,‘c 

then the solution should be sought 141 in the form of series 

E -:_Y B,* -1. 5 rip. 9 i 
Q) 

‘1’ $7 L-z -I 

i=t 
“~ v (I -- IO) -f T I- 2 E (I“, A = 2 e’h, (2.1) 

i=t i-1 

in which E,, IJ, and h, (i 2 1) are (T = m&periodic. CJsing the estimates (1.6) we find, that 
the functions 

E = E,*, ljl == Zlmv (t -- 1,) 3- I, h = 0 

will be a solution of (1.5) when E= 0. Inserting the series (2.1) into (1.5) and comparing 
the coefficients of like powers of F,, we obtain an infinite sequence of interrelated systems 

for E, , JI, and h, and in particular, the following system for the first increments 

Here the subscript 0 at the relevant expressions in brackets, mean that they are taken 
for the generation solution and for & I 0. The first elementary equation yields 
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(,-II -1 consl) 

From the above argument it follows that Et will be periodic function, if the phase con- 

stant satisfies 

T 

P(T) = 
0 

(Im T* = 0) (2.2) 

This condition is necessary and sufficient under the constraints imposed on the function 
/ and other quantities. We shall call (2.2) the condition of phase equilibrium. Later we shall 
see that the condition of periodicity together with other similar conditions have the deci- 
sive role in our investigation, since they will be used for elimination the secular terms. 

We find the function 4, in the similar manner 

Condition of periodicity together with the condition that a’(Eo* ) # 0, yield the value of 
the constant A t 

This defines the periodic functions E, and h, completely 

&=~($)odk+.II*. h,= f & U-f,) (g),dtj 

1. --do 
while $t is defined with accuracy of up to the constant B,. 

Equations for second increments yield 

. to 
where S, is a known periodic function 

+ ($), j [&S ( ;;). dk + (z,, f wo’.-l,*] dr, 
1. to 

Condition of periodicity of E, yields B, 

B,+ = - (g )-’ f-S2 (1) dt 
0 

provided that 7+ is a simple, real root of (2.2). This defines the periodic function $ t. In- 
oertfng the latter into the expression for E, and +2 we find 
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Thus the periodic functions E, and is can be fully determined from the oecond approxi- 

mation system, while 

The constant of integration B, appearing in this expression is obtained from the condi- 

tion of periodicity of E, etc. 
We can find in this manner the corrections of auy order and prove by induction that the 

method yields any required number of bounded periodic coefficients of the series (2.1). 

This means that we can obtain a resonaut solution which will be unique within the domain 

of definition and analyticity of the 6yste.n (1.5) up to any degree of accuracy in E for all 

t E [to, 00). 

N o t e 2.1. A steady resonant solution of (1.5) cau be constructed using consecutive 

approximations with the help of the following system 

Here X, Y and 2 are known, sufficiently smooth functions. Proof of the convergence of 
consecutive approximations i.e. of the convergence of the functions x,, y, and z, to T-perio- 
dic functions appearing in the following substitution 

E = Eo* + El, g=(I/m)v,(t-rt,)fr+ey. h=ez (2.3) 

is given in [4], therefore we consider the use of the proposed system justified. It should be 
noted that the method of consecutive approximations cau be applied to systems of the type 

(1.5). if the functions f, 0, F and g posses first and second order partial derivatives with 

respect to E, E, IJ and h satisfying, together with dH/dE the Lipshits conditions with t- 
independent constants in some region 

e E IO, e,l,_ -a GE - &* \<a. $ E (-0~. 0~). lhl <a 
The result obtained can be formulated. briefly as follows: 

T h e o r e m 2.1. If 

1) functions f. 0, F, H and g are sufficiently smooth and satisfy the conditions 
in Section 1; 

listed 

2) eqnations(2.2) has a real root T+ and 

3) the inequality 

CD’ (E,') M/ar+ + 0 
holds, then provided that ]e] is sufficiently small, the perturbed system (1.5) has a uniqne 
steady reaonsnt solution belonging to the domain of definition and smoothneaa of the func- 

tions f, 0, F, H and g. When 8= 0, this solution is 

E - Eo* = con3t, 9 =: (I / m) v (1 - to) + T+, h 0 = 
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N o t e 2.2. Wkan we ssy *‘the unfqueness of the solution” we mesa, tbat a single so- 

bttfon of the type (2.3) corresponda to a fixed at of v&es of m, 1, E,f and T*. It can be 

easily be shown that Eq. (2.2) sdtaits, on the segment of length 2n, sadtven nnmbcr of real 
root8 7’. 

Clitics1 cssee are possible, when the condition (3) of the Theorem does not hold. 
N o t s 2.3. Let T* be a real, r-tople (r> 2) root of (2.2), but let a,‘# 0. In this case 

the uniqueness of the solution as defined above, may be violated. In general, we caa reprc 

sent the steady resonsat solution in the form of a series in fractional powers of a small 

parsmeter. Integration constants of the type 8, csa be found from nonlinear algebraic equa- 
tions. Investigation of the generaiizad case is difficult sad demands the use of subtle sad 

involved rem&s of the theory of implicit analytic functions. Tbe pattern of splitting of the 

integral carves appears, in this case, to be very complex. 
N o t e 2.4, The case when (2.2) is satisfied identically for some m and I, is fairly 

often met in practice. We then speak of higher order motions. Malkin in [4] indicated the 
possfbflity of occurrence of such cases for the oscillatory nonlinear systems, while inves- 
tigating the periodic solution by Poincsre’s method. He also investigated sa saslogous 
putica)u case for a qaasilinear resonant system. Periodic resonant motions of the first, 
second snd third order sre obtained in [S] for a nonlinear analytic system with one degree of 
freedom sad their Liapunov stability ia investigated, Analogous rotational problem wss 

dealt with in [6]. 
We should note that this critical case is of considerable theoretical sad practical iater- 

est when applied. to the general system (1.1) and should be studied in detail. 
N o t e 2.5. Critical cases occurring when wo’= 0 are of practical interest, provided 

that 0 is independent of E, i.e. provided that the system is quasilinear. Real constants E,’ 
snd T* defining the steady mode can rhea be obtained from 

while the condition (3) of Theorem 2.1 assumes the form 

a (P, Q) I a (&*,r*) i 6 (2.4) 

If, on the other hand, 0 is dependent on E but ou ‘f 0, then the uniqueness of may be 
violated for some specified set of m sad 1. We call such s case sa exceptional one when 

dealing with nonlinear motions. Obviously, we can always achieve the condition <do’+ 0 

by varying m sad 1. 

3. laverstigation of stability of the perturbed resonant solution. 
We shell use the substitution 

E = E (t, E) C II, 9 - 11, (1, E) + V. h = h (I, &) i It 

to construct the following variational equations 

Hera the functions I,, F, sad g, are periodic in I, and the first terms of their expsasioas 

in U, P sad IF’ are quadratic. The well-knowa Liapuaov’s theorem [4] implies thet it is suf- 

ficient to favestigate the stability of the stagaation point of the linear approximating system. 

Wbea E = 0, we see that (n - 2) characteristic indices of the variational system have 

negative real parts, while two remaining indices bave both, real sad imaginary parts, equal 

to xero, These two indices have s single corresponding group of solutions. In this case the 
expsasion of the critical characteristic indices will be in the powers of 6 = 6. One of the 

eolntions of the variational system has the form 
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u = uexpyl, V = wespyf, W = w evV 
wberw ie the critical characteristic index, while I(, u and w are periodic fttnctions of h 

Moreover, 

.y= $f, IL= Sda,, t= ;&t. w= 56twt 

i=l bo i==O t==O 

i.e. the functions a,, V, and w, (i >, 0) should also be T-periodic. Tahing this into acconnt 

we obtain, from the conditions of periodiclty of uo, wo, wo, ut, ttt, w t and ua, the following 
relation for yt 

Vrr = 0’ (Es*) aP / a~* 
Thus, when yt 2 > 0, the perturbed solution is unstable for t 2 to; if, on the other band, 

yt2 < 0, then its stability depends on tbe sign of y2 which csn be found from tbe conditions 

of periodicity of the functions vt, w2 and us, and 1s 

T 

As a result, we have the following expression for both critical characteristic indices 

.r=fa(oo’aP/&t~‘r+6?7r+O(~) 

which yields, at sufficiently small e > 0, the following theorem. 
T h e o r e m 3.1. The constructed perturbed resonant solution (2.3) is Liaponov stable 

as well as asymptotically stable for t 2 to, provided hat 

ar 
0’ (E”‘) G < 0, ;‘[b%,. (i&Jo]d~ <o 

0 

and unstable otherwise. 
N o t e 3.1. Theorem 2.1 excludes tbe case yt = 0, i.e. the fimt condition is tbe neces- 

sary one. If y2 = 0, then higher powers of 6 must be tahen into account (computation of Yx 

etc.) to obtain the sufficient conditions of stability. 

N o t e 3.2. When 0 = const, the resonqt solution will be a$ymptotically stable if tbe 

eigenvalues of the matrix (2.4) have negative real parts (see Note 2.5). 

In conclusion we shall consider a specific example tahen from mechanics. 

4. Example. We consider a mechanical model representing a system with two degrees 

of freedom in the gravity field (Fig. 1). We assume tbat tbe model 

is fixed to a rigid support at two points, and tbat tbe forces acting 
at these points on the plane anaulus consist of a recurrent elastic 
moment and a frictional moment proportional to the angular velocity 

By constructing a Lagrangian for this system with the perturbation 
forces taken into account and performing the relevant differentiation, 
we can obtain tbe system 

mar0” - ma* sin 8 cos &p’* -I- mgo sin 8 = -a&B’ + ft (Vr) 

Icp” + mut sinr b.‘+ 2nrnrsin 0 cos OO’cp’+ kfq = - 

- a1 sin* ecP* - A,cp’ - Z, ((p) + gI pt) 

Here I denotes the moment of inertia of tbe ring relative to the 
O’OO%xis, aI is the coefficient of viscous friction between the 

Fig. 1 
ball and tbe outer medium, f, and gt are tbt external periodic mo- 

ments and at is a function in which tbe nonlinear effects of the elar 

tic moment are tahen into acconnt. Using the notation 
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-=&o(tp), +_;a, 21 w RI w 
f - = 82,” (vl) 

f 
we can obtain a system of the type (l-1) 

8” - sin 6 cos Ok’? -I- (g I a);sin 8 = E [f (yl) - W 

cp” + Ip’ + k2cp z 8 (1 + 8 sin* 0)--l [g (vt) + kg cp sin2 8 1- (A - a)cp’ sin?:0 - 

- 28’ cp’ sin&o&l - z (W)] (4.1) 

We shall, for definiteness, consider the case 

f (vt) E lo sin vf, g (vt) 3 g, sinfvt + ci), 2 (cf) z cq 

When t?= 0, the system (4.1) admits a two-parameter family of periodic 

0o = 2 arc sin (~1 sn [2 vs (t _t T), yl]), ‘PO 3 0 
-- 

(n= da&%* ToPJo)= GEM, Yl<l) 

or rotation&oscilIatory 

&, L?: 2 am 1 V’m(t + r), r?] = o (Eo) (t t- rf + 4 ?I t A-7 
$1 f 1 $- ?: 

sin $0 (Eof (I -‘- t) 

CpJ = 0 (yz = 1 /yl < 1, To (E,) = 2 1/2/&K (y:), q == exp -- SK’/ K) 

solutions. Here K denotes a complete elliptic integral of the first kind taken over the cor- 

responding moduli, while E, aad T are constants of integration. In the following we shaH 

Lit ourselves to 

8 

we can obtain the 

dq/dt = 

2 

the ~tst~ou~~~s~iIl~to~ solutions. Using the substitution 

= 00 (‘4~ EL 0’ = e.0 (9, E), h, = T. !Et, = l-q’ 

following system of the type (1.5): 

dEfdt :=: ~0~’ (fo sin vl - aOo’) + Oo’ sin 0” cos &, h,? 

t/Eii .z / K (y2) -i- 00’ [ E (i osin vt - crOo’) -f-sin O0 cos O,h~?j s 

x Gb’ f2E-- 5 ‘g / a (f - cos r)]-I” --‘o. (XC - 2g /n (1 - cos ~$1~‘!‘) dx 

0 

dh, / dt = II?, dh? / dt L= - Ml -- Ah, f- e (1 -j- a si II? CI,~)-~ x 

7 X [go sin (vl -t_ 6) + (h%, + (h - z) ho) sin? O. - h&,’ sin ZOO - c’zlaJ 

aad apply to it the method developed in Sections 2 and 3. 
We can, however, investigate the system (4.1) directly. Substituting into it the series 

0 = 0, (*o, E,) -t &Or (t) + . . . . cp = EcpL (t) I- &?rf, (t) -1 .I. 

and comparing the coefficients of like powers of & we obtain, in particular, 

8,” + (g / n)fl, cos 0, (qo, E,) = f. sin vl - a@,’ (J>o, &) 

(rr” f lq,,’ 4. k?fpr - go sin (vt i- 6) 

Periodic solution of this linear system can be obtained in its explicit form using the 

method of variation of the integration constants 

1 4YO$~(i e1 = bfleo* i_- x , . 
a00 

0’ -0 

0 srn v12 - aOo’) O~‘flt? - 00 3ti~ (fo sin vfl -. aO,,‘) -- N1 
1 

fZll + 

aoo it 

-f- w” x& [J 
(fo sin vfl - ~@a’) tl,,‘dtl - N, 

31 
z M&“’ + elf 

0 

N1= -;$, o si II vfl - a&,‘) %‘dtl - o,, $$ (i. sin vt - MO’) 
1 

dt 

qt = [go (@ - v?) sin (vt + 3) - gokv cos (vf -i 6)] ,I [(ii? -- v?)- I Osv)?l 
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Here .Jfil and N, are constants of integration, while A = A (0) is a Wronskiau for the Eq. 

2’. -!- (g I .)0~0,, - 0 (2, I-; o,, zs = e, 1 -I- o,a, I c%&)) 
where the brackets contain its basic system of solutions. For simplicity we shall only con- 

sider the resonance of the form m : 1. Then the equation of phase equilibrium can be writ- 

ten as 

4rrnt m 

P (7) z - -7 __9... si* VT _ _- -.I- 
1 f_ q?nl’ 

gav C (Y>) = o 

nnr h’ (T?) 

where G denotes a complete elliptic integral of the second kind. This equation admits the 

following real roots 

/3 := WaG (p) (1 i- qzm) / zr2nCh’ (yo)q’” < I 

provided that the inequality 

‘tl =-I --(1 / v)nrc sin 0, I* - (1 / V) (21 + arc sin fi) (mod an) 

holds. If fl< 1 (the case I? = 1 is a critical one) we have ~?P/.*~~* # 0 and by Theorem 2.1 

there exists a solution of the perturbed system provided that F, is sufficiently small. In par- 

ticular, Expressions 

e --- o. + & (IU,‘OO i- el*) i 0 (E?), cp == E(l, (1) -t- E”cp, (1) f- 0 (8”) ] 

hold for t ~[0, cm). Here we use the following notation 

Moreover, by Theorem 3.1 we can establish that the perturbed solution is asymptotically 

stable for 7+ = 71, provided that a > 0. 
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